Agujeros de gusano y el condensador de fluzo

¿Quién no se ha emocionado de niño viendo al auténtico coche fantástico en la película de Zemeckis Regreso al futuro? Sus idas y venidas al pasado y al futuro hacían las delicias de los que crecimos en los años 80. Pero, ¿cómo funcionaba?

Durante este mes de agosto, en el blog he explicado un montón de cosas básicamente sustentadas sobre la teoría de la relatividad de Einstein. La gente, cuando se habla de viajes en el tiempo, suele pensar en agujeros negros. Pero la verdad es que estos viajes serían mucho más probables en unos primos hermanos del los agujeros negros que son los agujeros de gusano. ¿En qué consisten?

¿Os acordáis de la ameba que pensaba que vivía en un mundo 2D cuando, en realidad, lo hace en un mundo 3D? Vamos a imaginarnos otra vez que somos esa ameba. Un día la madre del niño se pasa a ver la cabaña y ve el plástico que hace de tejado (y donde vivimos) hecho un asco. Así que se lo lleva y lo limpia y, antes de volver a ponerlo en su sitio, lo tiende. Podría ser que, en algún momento, puntos muy alejados del plástico, gracias al pliegue, se toquen. Y nosotros, que somos la ameba y paseamos tan rícamente por su superficie, podríamos pasar de un lado al otro sin darnos cuenta.

Como ya explicamos que el continuo espacio-tiempo puede deformarse, en nuestro universo pasa lo mismo pero en un 4D que percibimos como 3D. Cuando este sufre un pliegue que hace que dos puntos muy alejados del Universo se vean unidos lo llamamos agujero de gusano.

Agujero-de-gusano

Alguno puede decir a estas alturas que yo lo he planteado como viaje en el tiempo y, hasta ahora, no voy más allá que lo que hacen las naves de Battlestar Galactica. Efectivamente, esto es lo que deberían hacer sus naves. Y paciencia, que ahora cuento los viajes en el tiempo.

Imaginad que somos capaces de «abrir» agujeros de gusano. Entonces, algún avispado descubre un negocio; lanza una nave al espacio y abre una entrada en la superficie de la Tierra y otra dentro de la nave. Un montón de turistas van locos a pagar para ver el espacio sin pasar por el incómodo despegue de una nave espacial.

Así que abren el agujero de gusano, pasa la gente, lo cierran y dan un paseo con la nave por el universo. Pero un día, al «botones» del agujero se le olvida cerrar el agujero de gusano antes de mover la nave. Así que, mientras una puerta del agujero está parada en la superficie de la Tierra, la otra está moviéndose por el espacio.

¿Recordáis aquello de que, a velocidades muy altas, el tiempo pasa más despacio? Eso significa que, si la velocidad de la nave es cercana a la de la luz, para la entrada de la nave el tiempo ha pasado más despacio. Esa es nuestra máquina del tiempo.

¿Eso quiere decir que las máquinas del tiempo existen? No tan rápido…  En realidad, los agujeros de gusano son un resultado de las ecuaciones de la relatividad de Einstein, pero están en un punto que, como los agujeros negros, se tocan con la mecánica cuántica. Y es justo ese espacio el que la ciencia está investigando ahora.

Uno de los grandes problemas es justo lo que genera el conflicto en Regreso al futuro; el libre albedrío. Si los viajes en el tiempo son posibles, nada impediría que fueras al pasado y mataras a tu madre impidiendo tu nacimiento. Es lo que Thorne, el físico que más ha trabajado sobre el tema, llamó la paradoja del matricida.

Cuando Thorne presentó su teoría ya intuía que era poco factible. Hawking hizo una conjetura que se conoce como la conjetura de la protección cronológica que, en su habitual tono de broma dijo que «mantendría el mundo a salvo de los historiadores».

La protección que el Universo podría tener contra ese tipo de objetos estelares es el siguiente; en los espacios vacíos se producen oscilaciones aleatorias. Las que se produjeran dentro del tunel del agujero convertido en máquina del tiempo, según sus cálculos, podrían amplificarse tanto que acabarían por destruirlo.

El problema es que, para saber la intensidad real de esas amplificaciones, y por tanto concluir si los destruyen o no, deberíamos conocer mejor lo que parece que en un futuro unificará las dos grandes teorías actuales; la relatividad y la mecánica cuántica, en lo que se conoce como gravedad cuántica, tema del que ya hablaré más adelante.

Si el tema os interesa os recomiendo el libro donde Kip Thorne explica sus investigaciones sobre agujeros de gusano en Agujeros negros y tiempo curvo. Me encantó porque explica todo lo que suelen explicar estos libros (relatividad, mecánica cuántica, evolución de las teorías a lo largo de los años…) pero, además, añade la experiencia personal en el desarrollo de la descripción de los agujeros de gusano. Con sus pasos adelante y sus pasos atrás, sus miedos a perder la credibilidad delante de la comunidad científica, las malas interpretaciones de la prensa a su trabajo…

Así que ya sabéis qué es lo que provocaba el consensador de fluzo y, de paso, el final de Lost. Siento haberlo reventado [NOTA: Es broma. Cuando escribí este post, Lost aún no había acabado. Básicamente, me anticipaba al final. Errando mucho, por cierto.]

El Big Crunch no es una tableta de chocolate crugiente

Todo en este mundo tiene un inicio y un fin. Asumimos que el inicio del Universo ya lo sabemos; el Big Bang. También parece que es ineludible que el tiempo siempre va hacia adelante en la dirección que nos marca la entropía.

Y entonces, ¿todo esto cómo se acaba? Pues la respuesta no está clara, pero siempre incorpora un big en su nombre y ya os advierto que ninguna es demasiado alentadora ni apetecible.

Vamos a jugar con una pelota. La lanzamos al aire y esperamos a que vuelva a caer. Utilitzando siempre la misma fuerza, si la pelota pesa mucho no llegará tan alto como si la pelota es ligera. Y si la lanzo con más fuerza, tardará más en caer que si la lanzo con poca fuerza. Y existe la posibilidad de que si la lanza Asterix, la pelota salga tan rápido que acabe por escapar de la gravedad de la Tierra y acabe vagando por la galaxia sin rumbo por siempre más.

Al Universo le pasa algo parecido. Hasta los años 90, los físicos estaban interesados en dos datos; la densidad del Universo (que viene a ser como el peso de la pelota), y la velocidad a la que se separan las galaxias (que sería la velocidad a la que lanzamos el balón).

Si el universo «pesa» demasiado poco, entonces es como cuando lanza la pelota Asterix. La gravedad no tendrá fuerza para parar la expansión. Aún así, el universo iría, cada vez, más lento. Todo estaría, cada vez, más aislado de lo demás. Además, las estrellas acabarían su combustible y en el universo acabaría haciendo un frío que pelaría y, encima, sin luz. Sería la muerte térmica del universo. Es lo que se conoce como Big Freeze, en castellano Gran Congelación. (NOTA: si os parece interesante, vale la pena mirar el enlace de la wikipedia que he puesto porque da muchos más detalles de cada uno de los procesos finales del Universo).

Pero, ¿qué pasa si el universo «pesa» mucho? Que la propia gravedad del Universo irá frenando las galaxias hasta que se paren y empiecen a retroceder. La pelota volvería a caer. Entonces toda la masa volvería a caer en un solo punto, como justo antes del Big Bang. Incluso se plantea la posibilidad de que eso provocaría que la materia chocara y se produjera un nuevo Big Bang, que se conoce como Big Bounce (Gran Rebote). Es más, podría ser que nuestro Big Bang no haya sido el primero… A esto se le conoce como el Big Crunch (Gran colapso).

Esta teoría tiene un problema y es que no cumple con la segunda ley de la termodinámica. Quedamos con que era obligatorio que las cosas estuvieran cada vez más desordenadas. Pero, en este caso, cada vez que hay un Big Bang, el Universo debería hacer un «reset». Y eso, claro, incumple la ley. Hay incluso quien plantea la posibilidad que, en cuanto las galaxias empezaran a retroceder el tiempo cambiara de dirección, de tal forma que dejaría de ir para adelante para ir para atrás. Es decir, que los vasos no se caerían de la mesa y se partirían en 1000 pedazos, sino que, los 1000 pedazos se convertirían en una taza maravillosa.

Lo curioso es que a finales de la década de los 90, algunas mediciones de la velocidad de las galaxias, dieron resultados sorprendentes. La velocidad a la que se separan no sólo no se estaba frenando sino que, por lo visto, se acelera. O sea, que otra vez nos ha cogido la realidad a contrapie.

Parece que habría una fuerza en el universo que hace justo lo contrario que la gravedad, es decir, separar las galaxias, y que se notan sus efectos cuanto más alejadas están las unas de las otras. Aún así, el final que le espera a nuestro universo si esto se confirma es muy parecido al del Big Freeze pero más rápido. Le llaman el Big RIP,  que no hace falta que traduzca.

Si alguien pretendía la supervivencia eterna de la raza humana y se planteaba que, tarde o temprano, tendríamos que abandonar la Tierra porque algún día acabará engullida por el sol, ya puede empezar a pensar cómo saltar de este Universo a otro, si es que hay más…

La sostenibilidad es mentira

Hoy he decidido ponerme provocador. Y sí, ya sé que me había comprometido a lanzar estos días de agosto posts de física. Pero es que este… lo es.

En la década de los 60’s nació un movimiento gracias a una actitud muy contestataria con el sistema establecido y, por qué no reconocerlo, las drogas que permitían conectarse con la naturaleza; el ecologismo. Gracias a ello, hemos adquirido una conciencia de que estamos destruyendo el medio ambiente. Y había que hacer algo.

Aunque ese discurso ha evolucionado, la esencia se mantiene. Uno de los conceptos que se maneja en la actualidad es la sostenibilidad. En definitiva, se trata de hacer un consumo que evite la destrucción del medio en base a un cambio en las fuentes energéticas y en el reciclaje. Pero entraña una dificultad insalvable que va en contra de las leyes de la física. Estamos condenados a consumir siempre más de lo que «extraemos». Y la culpa la tiene la segunda ley de la termodinámica, también conocida como ley de la entropía. Me explico…

La ley de la entropía lo que dice es que, si tenemos un sistema con un cierto orden, pasado un cierto tiempo, ese sistema sólo podrá tener el mismo orden o estar aún más desordenado. ¿Suena denso? Piensa en tu habitación. Cada día entras y vas dejando la ropa que usas, coges ropa limpia, duermes, metes papeles… Si la dejas sola, acabará muy desordenada. Ella sola no va a ordenarse nunca.

Pero un día decides ordenarla; cambias las sábanas de la cama y coges la ropa sucia y la metes en la lavadora para luego plancharla. Pasas un trapo, limpias el polvo del armario con un trapo mojado. Y, por último, pasas la escoba, tiras a la basura los papeles que no te sirven y colocas bien los que te son útiles.

Tu habitación quedará como los chorros del oro. Pero eso implica que has llenado unas cuantas bolsas de basura con papeles que «desordenarán» un vertedero (puedes reciclarlo y, entonces llenarás el aire de partículas contaminantes por los tratamientos industriales), has «ensuciado» agua con el jabón y la suciedad de tu ropa. Y el agua que has utilizado para planchar la ropa ha pasado de líquido a vapor de agua (una forma más «desordenada» de agua). Con lo que el sistema acaba más desordenado en conjunto.

El universo es así. Tiende, cada vez, ha estar más desordenado. Es inevitable. ¿Te has preguntado alguna vez qué es el tiempo? Creo que Aristóteles decía que el tiempo era la medida del cambio. Si dejamos de lado las teorías cuánticas, que tratan el tiempo de forma bastante distinta, el tiempo desde un punto de vista físico, está íntimamente relacionado con la ley de la entropía. Y no sabemos por qué.

Imaginaos desayunando. Todos entendemos que, si se acerca un patoso a tu taza de café (podría perfectamente ser yo), puede tirarla al suelo y romperse en pedazos. Eso sigue la entropía. Antes estaba más ordenada (era una sola pieza) que ahora (que son un montón de pequeños trozos). Pero, cómo se nos quedaría el cuerpo si una taza rota subiera a la mesa y se convirtiera en una sola pieza. ¡Congelados! ¿Por qué? Porque iría en contra de la entropía.

Realmente es desconcertante que podamos ir para adelante y para atrás en cualquiera de las 3 dimensiones espaciales y, en cambio, no podamos hacerlo con el tiempo. Más ahora que sabemos que espacio y tiempo forman parte de una misma realidad que llamamos continuo espacio-tiempo.

Por todo esto, jamás tendremos sistemas 100% sostenibles en el sentido de que siempre nos veremos obligados a no violar la segunda ley de la termodinámica. Hay una trampa en todo esto. La Tierra no es un sistema cerrado porque nos llega mucha energía de fuera; el sol. Si somos capaces de aprovechar más energía del sol que la que extraemos de la Tierra para hacer los sensores que convierten esa energía en electricidad le estaremos ganando la partida en la generación energética (en otros aspectos no, como por ejemplo, en los desechos).

Pero hay algo que la mayor parte desconoce y es la dificultad de generar esos sensores. Están hechos de silicio, que está en todas partes. Pero no nos engañemos, extraerlo consume mucha energía en diversas formas; además del evidente necesario para extraerlo del suelo, gastamos silicio (que no parece muy importante porque hay mucho), pero hacemos enormes agujeros con multitud de material que se convierte en un residuo que tenemos que desechar de alguna forma. Tenemos también que poner esas placas en algún sitio que ocupan y el espacio también es un recurso.

He querido provocar un poco. Ni estoy en contra de la energía solar, ni mucho menos estoy estoy en contra de la sostenibilidad entendida como economizar recursos. Es más, estoy a favor. Pero, cuando en su día descubrí la ligazón estrecha entre la entropía y el tiempo, vi que el asunto es mucho más complejo de lo que yo había pensado.

Big Bang, la teoría del microondas

Está claro que el ser humano siempre ha intentado saber de dónde venía. Y las teorías creacionistas (Dios nos hace a su imagen y semejanza) han funcionado durante siglos. Pero un día, a alguien le dio por mirar al cielo y preguntarse cómo funcionaba todo aquello tan bonito del cielo. Entonces llegó Newton y descubrió la gravedad. Los cuerpos se atraen entre si. Y surge la pregunta.

Si las estrellas se atraen entre si, deberían ir acercándose hasta juntarse, ¿no? Newton no tenía respuesta para eso. Llegó a la conclusión que universo era infinito, así que siempre encontraríamos un grupo de estrellas un poco más allá que impedirían que las de más cerca se juntaran, llegando a un equilibrio. Pero había un problema. Si eso fuera así, cada uno de los puntos de nuestro cielo acabaría en una estrella. O sea, en un punto de luz. En consecuencia, la noche debería ser tan luminosa como el día.

La teoría evolucionó. Algunos físicos, a principios del s. XX detectaron las galaxias y nebulosas estaban separándose de nosotros. Así que universo se expandía. De esta manera ya no hacía falta un universo infinito. Sólo había que encontrar la causa de esa expansión.

El primero en proponer la teoría del Big Bang fue George Gamow, un ruso nacionalizado estadounidense. Aquí vamos a acabar con un mito; el Big Bang no es una gran explosión que escupió materia por el espacio. En realidad, la teoría lo que dice es que, al principio, toda la materia y todo el espacio estaban concentrados en un sólo punto de densidad infinita. Tras el Big Bang, el espacio en si mismo se hacía más grande y, por tanto, la distancia entre las partículas se hacía mayor. ¿No lo entendéis? No os preocupéis, yo tampoco.

Hubble, que antes de ser un telescopio era una persona, calculó la velocidad a la que se separaban las galaxias y obtuvo lo que se conoce como ley de Hubble. ¿Os habéis fijado que la sirena de una ambulancia no suena igual cuando se acerca que cuando se aleja? Cuando se acerca suena muy aguda pero, en cuanto nos supera, se vuelve grave. Es lo que se conoce como efecto Doppler. La luz, que se comporta como una onda, sufre el mismo fenómeno. Cuando una galaxia se aleja se ve más roja. Si se acerca, la vemos más azul.

Como sabéis, el método científico exige que cada nueva teoría ha de predecir cosas con las que comprobar si es válida o no. De ser cierta la teoría del Big Bang debíamos ser capaces de encontrar lo que se conoce como radiación cosmológica de fondo o fondo de microondas.

radiacion-de-microondas

Cuando miramos al cielo y vemos una estrella no estamos viendo el presente de esa estrella sino cómo era esa estrella miles de años atrás. Conforme más lejanas son, más antiguas. Así, si queremos entender el universo antiguo, sólo tenemos que buscar estrellas lo suficientemente alejadas.

¿Hay un límite? Sí, lo hay. En los primeros años, unos 380 mil años, la temperatura del universo era tan alta que no había luz. Hizo falta que se formaran los primeros átomos de hidrógeno, el átomo más sencillo y pequeño, para que los fotones, o sea, la luz, corrieran libremente.

Justo en ese momento, se alzanzó una temperatura de unos 3000 K (algo más de 2700ºC). Ese calor se ha ido disipando a lo largo de los 14 mil millones de años del universo. Pero, si la teoría del Big Bang era cierta, debía quedar un pequeño rastro. El fondo de microondas es ese rastro que detectamos hace ya muchos años.

Pero no todo lo que reluce es oro. El Big Bang se encuentra con unas cuantas dificultades, y alguna de ellas, seria;

1º/ Imagina una barra de hierro. Encendemos un fuego y la acercamos. Eso calentará las moléculas que queden cerca del fuego. Y estas calentarán a sus vecinas hasta que toda la barra tenga la misma temperatura. Pero si esta barra fuera enorme, nos costaría mucho que el calor llegara a los lugares más alejados. Es decir, sería difícil conseguir un equilibrio térmico. Ahora imagina el universo; tenemos partículas muy alejadas entre si, por lo que imaginar que todas las partículas tengan la misma temperatura parece improbable. Lo que los físicos esperaban encontrar en el fondo de microondas era que el calor residual que quedara de aquella explosión variara mucho en función de la dirección en la que la tomáramos la temperatura. En cambio, todos los puntos parecen tener temperaturas parecidas. Eso juega en contra del Big Bang.

2º/ Esto que viene ahora es muy difícil de visualizar. En nuestra vida cotidiana, observamos objetos con diversas formas geométricas (planos, esferas…). El universo, que recuerdo que tiene 4 dimensiones (3 de espacio y 1 de tiempo), también podría tomar diversas formas. En concreto, las más importantes; plana (la más intuitiva), esférica (si partes de un punto y sigues una línea recta, acabas volviendo a ese punto otra vez) o hiperbólica (que es parecida a la montura de un caballo). Las mediciones dicen que vivimos en un universo casi plano. El problema es que, por lo visto, un universo casi plano debería derivar muy rápido en uno esférico. Y eso no es lo que está sucediendo. Sigue siendo casi plano.

geometria-del-universo

Le hemos buscado una explicación a esto, y la única razonable sería que, en una edad muy temprana, el universo se expandiera a una velocidad superior a la de la luz. Es lo que se conoce como modelo inflacionario [AÑADIDO: A 18/03/2014 parece que este modelo ha sido comprobado]. Pero eso acarrea otras consecuencias de las que hablaré otro día.

Que nadie se asuste. La teoría del Big Bang tiene muchos puntos a favor y está muy aceptada por la comunidad científica. Pero eso no quiere decir que no tenga puntos débiles ni que tenga que ser lo que, en realidad, sucedió. Y eso es bueno porque sus posibles errores son puertas a un mayor conocimiento en el futuro.

Las supernovas, los fuegos artificiales del espacio

Mirar al cielo de noche siempre resulta gratificante, a no ser que vivamos cerca de grandes núcleos urbanos que, por cierto, es lo que nos pasa a la mayoría. Sin saber por qué, el cielo estrellado nos parece de una gran belleza.

Pero eso es porque no hemos tenido la oportunidad de ver una supernova, a una distancia prudencial, claro. Una supernova es la explosión de una estrella hipermasiva en el momento de morir. En la imagen podéis admirar la belleza de la supernova de Kepler, que estalló muy cerquita nuestro; apenas 20000 años luz. Se pudo ver a simple vista con un tamaño parecido al de un planeta y más que cualquier estrella que no fuera, obviamente el sol. Una explosión de este tipo demasiado cerca, sería fatal para la Tierra.

supernova-de-kepler

Pero, ¿cómo se produce algo así? ¿Por qué explota una estrella cuando muere? Primero hay que entender cómo funciona una estrella. La pregunta clave es, si la gravedad es tan fuerte, ¿por qué no se va haciendo cada vez más pequeña y más pequeña? Es verdad que la gravedad tiende a juntar cada vez más la materia. Entonces, ¿qué se lo impide?

Hay dos procesos que luchan contra la gravedad. El primero es muy intuitivo. ¿Qué pasa si comprimes algo? Que se calienta. El calor no es más que partículas moviéndose muy rápido. Las partículas chocan unas con otras, y eso las aparta. Por eso las cosas se dilatan. Y eso es justo lo que les pasa a las estrellas. Esta fuerza contrarrestadora es la que predomina en las pequeñas estrellas, como nuestro sol.

estrella01

Hay otra fuerza. La enorme presión a la que la gravedad somete a las partículas del núcleo de la estrella, acaba haciendo que se fusionen. Y lo que provocan son reacciones termonucleares que dejan en una broma de mal gusto las más destructivas bombas nucleares que tenemos. También resulta intuitivo entender que esas explosiones tienden a expandir a la estrella. Esta fuerza es la que predomina en las grandes estrellas para luchar contra la gravedad.

estrella02

Así, gracias al equilibrio entre la gravedad y la dilatación y las explosiones nucleares, las estrellas mantienen su tamaño. Pero estas van consumiendo su combustible. Esto es, el morenito que nos sale en verano es porque nuestra estrella, el sol, se ha desprendido de mucha energía en forma de fotones, o sea, luz (en la siguiente imagen, la a). ¿Qué le pasará cuando se le acabe el combustible? Si la estrella es pequeña, como es el caso, simplemente se enfriará hasta convertirse en un pedrusco enorme.

Si la estrella es gigante, hay un momento en el que el combustible (partículas de hidrógeno que hay por el núcleo) se agota (b). En ese momento, la fuerza que hacían las reacciones nucleares para contrarrestar la gravedad, desaparecen. Y la estrella se comprime, implosiona o, como dicen los cosmólogos, colapsa (c). De repente, toda la materia de la estrella cae, de golpe, a su propio núcleo.

Ahora imaginaos toda esa cantidad enorme de materia concentrándose en tan poco espacio a una velocidad tan grande que cuesta de imaginar. ¿Qué sucede luego? Lo único que podía pasar. La materia choca con tanta violencia que sale disparada en dirección contraria extremadamente caliente y liberando una energía enorme (d,e, y f). Y ahí tenéis la supernova.

supernova

(imagen de la wikipedia)

Hay varios tipos de supernovas, pero no voy a entrar en eso. Si queréis información más técnica sobre eso, os paso el enlace de la wikipedia.

Y después de la supernova, ¿qué? Mucha de la materia/energía (ya vimos que era lo mismo) sale disparada. Pero puede quedar una parte que no escapa de la gravedad de la estrella. Este nucleo recibe el nombre de estrella compacta u objeto compacto. Hay varios tipos y, en resumen, son estrellas que no luchan con la gravedad gracias a reacciones termonucleares sino a fuerzas de origen cuántico.

Si la masa que ha quedado sigue siendo muy grande, estas fuerzas cuánticas tampoco son capaces de luchar en equilibrio de fuerzas con la gravedad y colapsan de nuevo. Y esta vez lo que generan es un agujero negro.

Las supernovas son fuente de contradicciones muy fuertes; destruyen lo que encuentran a su paso y son, en algunos casos, el nacimiento de un agujero negro. Pero, a cambio, son de una belleza difícil de superar y reparten materia por el universo que facilita la formación de, por ejemplo, planetas y otras estrellas. Fuente de vida y de muerte a la vez. No está mal para el guión de una película… 😉

Agujeros negros, sumideros de materia

Ya comenté que lo que deforma el espacio es la gravedad. O sea, que se da una curiosa circunstancia; cuando la materia se concentra mucho, se deforma a si misma. Pero, ¿podemos llevar eso al límite?

La respuesta es sí y lo llamamos agujero negro. Es algo que precide la teoría de la relatividad y, por cierto, a Einstein molestaba mucho. Él creía que, aunque fuera teóricamente posible, a la práctica no se daría.

La idea es la siguiente; La masa genera gravedad. Y la gravedad deforma el espacio atrayendo más masa hacia si misma. Si la masa va aumentando, llega un momento en el que la gravedad es tan fuerte que, a partir de un cierto punto, nada puede escapar a ella, ni siquiera la luz. A ese punto de no retorno le llamamos horizonte de sucesos.

agujero-negro

(Imagen de isftic)

En el momento en el que se forma el horizonte de sucesos nace el misterio porque nada ni nadie que entre, podrá volver para explicarlo. ¿Qué hay en el interior de un agujero negro? Aquí entran en juego la relatividad y la mecánica cuántica. Cada una precide unas cosas y aún no tenemos claro qué sucede en realidad.

La relatividad precide que, pasado ese horizonte de sucesos, la masa sigue cayendo y cayendo atraída por unas fuerzas gravitorias terribles hasta el núcleo del agujero. Como ya sabéis, cuanto más rápido vamos, más se contrae el espacio (somos más pequeños) y más se dilata el tiempo (pasa más poco a poco).

Pero lo que nos espera en el núcleo es lo más increíble. El espacio estará tan comprimido que, en un punto infinitamente pequeño, habrá una enorme acumulación de masa. El tiempo, va tan poco a poco que, en ese punto… se para. Y a ese punto lo llamamos singularidad.

Eso es lo que demostró el archiconocido físico Stephen Hawking entre otros a finales de los 60’s. Y el nombre al nuevo cuerpo celeste se lo puso John Wheeler, un cachondo que provocó airadas críticas por el nombre que propuso pero que acabó siendo aceptado.

El problema era que, aunque a nivel teórico fueran posibles, si de verdad hasta la luz que se acercaba desaparecía cayendo en su horizonte de sucesos, ¿cómo diantres íbamos a detectar uno? La clave está en aquello que ya comentamos en el blog de que la luz ve deformada su dirección a causa de la gravedad. Como un agujero negro es muy masivo, hará una especie de efecto lenticular curioso. Esta imagen, tomada de la wikipedia, es la imagen simulada de cómo veríamos desde la Tierra un agujero negro a unos 600 km. con 10 veces la masa solar.

agujero-negro

Gracias a este efecto óptico hemos podido detectar diversos agujeros negros en el universo. El más cercano, uno enorme en el centro de nuestra galaxia.

Se dan un par de paradojas bastante divertidas con este proceso.

Un agujero negro está en la mayor de las ausencias de luz. Pero si está goloso consumiendo materia, a su alrededor gira muchísima materia que sí es muy fácil de ver. Y, como todo va tan rápido, se pone caliente, lo que provoca que sea muy luminoso.

Si la cantidad de materia es muy grande, entonces esta empieza a chocar la una con la otra antes de cruzar el horizonte de sucesos. Esos choques provocan que grandes cantidades de materia salga disparada en lo que se conoce como chorros de acreción y que suelen tener distancias de años-luz (un año-luz no mide tiempo sino la distancia que recorre la luz en un año). Por lo visto, curiosamente, están implicados en la formación de estrellas, por lo que el trabajo de los agujeros negros no es sólo destructivo sino que puede formar galaxias.

agujero-negro-2

Ahora sabemos que, en realidad, los agujeros sí dejan escapar algo de su materia por un curioso fenómeno cuántico que se produce justo en la superficie de su horizonte de sucesos. Incluso, si el agujero negro es muy pequeño, puede llegar a evaporarse.

Cuando pusieron en marcha el acelerador de partículas del CERN salieron los listos de la clase a decir que esto era el fin del mundo porque este acelerador era capaz de generar agujeros negros. Y tenían razón. No en lo del fin del mundo, sino en que pueden formar agujeros negros. Pero son tan diminutos, que se evaporan en seguida. Así que lo demás es prensa amarilla.

Los agujeros negros suelen ser los reyes de las conversaciones entre los que no entendemos de física pero nos gusta. Pero no son los únicos ni los, para mi, más espectaculares. Supernovas y, sobre todo, los agujeros de gusano, son increíbles. Hablaré de ellos en próximos posts.

La gravedad todo lo deforma

En algunos posts anteriores, he comentado que no vivimos en un mundo 3D sino 4D en lo que se conoce como continuo espacio-tiempo.  Además, también he explicado que los objetos lanzados a velocidades próximas a las de la luz, el tiempo se dilata y el espacio se contrae.

Si alguno de vosotros no había tenido suficiente con todo lo explicado para sorprenderse, voy a dar otro dato con el que es difícil quedarse indiferente. Dando por explicado lo dicho, lo que deforma el continuo espacio-tiempo es la gravedad. Ahí es nada…

Ya forma parte de nuestra compresión del mundo que, cuando una masa es muy grande, tiene la capacidad de atraer materia. Pero comprender que, además, la deforma, ya no es tan fácil. Pero no hemos de olvidar un elemento importante. Igual que la pobre ameba de la que hablamos no es capaz de comprender un universo 3 dimensiones, para nosotros no es comprensible un universo 4 dimensiones. Y, de igual manera que nos parece obvio que un mundo 2 D puede deformarse dentro de un universo 3D, uno 3D puede hacerlo en un 4D.

Pero, ¿por qué lo deforma? En realidad, una vez aceptamos que, a altas velocidades, el tiempo se dilata y el espacio se contrae, el hecho cierto es que es relativamente fácil aceptar que la gravedad deforma el espacio. Voy a tratar de ser lo más intuitivo posible (y eso, tarde o temprano, acabará implicando que un físico se moleste mucho con lo que escribo ;)).

Imaginad que trabajáis en una de las naves de Battlestar Galactica y, en un esfuerzo sin precedentes, os piden que os acerquéis a una estrella hipermasiva. El gobierno, además de ahorrarse vuestro UVA, quiere consumir el mínimo combustible posible. Así que, os acercaréis a la estrella y os dejaréis llevar por la gravedad de esta.

Si nada os frena, cada vez cogeréis más velocidad. Y esa es la clave de todo. Si ya vimos que, a más velocidad, más deformación del espacio y del tiempo, querrá decir que, conforme os vayáis acercando a la estrella, mayor será la deformación de vuestro espacio-tiempo. Dicho con otras palabras, la gravedad deforma el espacio-tiempo. Y, cuanto más cerca, más lo deforma.

La gravedad es capaz de atraerlo todo. Y cuando digo todo es todo; incluída la luz. Imagina que estás mirando un cielo estrellado precioso en una noche despejada. La luz trata de seguir una trayectoria recta. Pero por el camino se encuentra estrellas muy masivas que desvían su trayectoria.

defleccion

(imagen de shelios)

Para demostrar que tenía razón, después de publicar en 1915 la teoría de la relatividad general, Einstein tuvo que esperar al siguiente eclipse de sol. La idea era la siguiente. Si la luz de las estrellas se veían desviadas por elementos muy masivos, se verían desviadas por la gravedad del sol. Luego, en un eclipse de sol, las estrellas que deberían quedar tapadas por el astro rey, se verán justo al lado de este.

Todos los físicos esperaron aquel día con mucho interés aunque muchos no daban demasiada credibilidad a lo que Einstein dijo. Pero el 29 de mayo de 1919, el primer eclipse de sol total desde que se publicó la teoría, todos los cosmólogos miraron al cielo para ver si las predicciones eran correctas. Y los astros le dieron la razón.

En 1922 Einstein ganó el premio nobel de física y su teoría quedó ratificada. Y nuestro concepto del universo, del tiempo y del espacio, cambiaron para siempre.

Bienvenidos a la cuarta dimensión

La física nace de hacerse preguntas sobre nuestra experiencia diaria. En un principio, la intuición era su motor. Cuando Newton se dio cuenta que las manzanas se caían al suelo, se preguntó por qué. En base a ello buscó una regla matemática que le ayudara a predecir a qué velocidad caería y, por ejemplo, con qué fuerza golpearía al suelo la manzana que cayera del árbol. A eso lo llamamos la ley de la gravedad.

Pero la ciencia evolucionó y, a princpios del s. XX, algunos experimentos demostraron que la realidad de lo muy grande y de lo muy pequeño era mucho menos intuitiva de lo que nos pueda parecer. Dos teorías nacieron y caminaron por separado unos cuantos años para acabar cogidas de la mano, aunque aún discrepan en algunos puntos; la Teoría de la Relatividad de Einstein y la Mecánica Cuántica.

Si miramos a nuestro alrededor, percibimos 3 dimensiones de espacio y una de tiempo. En el espacio parece estático. Un metro es un metro y no hay alteración posible. Y respecto al tiempo pasa otro tanto. El reloj marca su paso sin que ninguna condición externa parezca poder afectar. Además, nuestra experiencia demuestra que el espacio y el tiempo son realidades absolutamente separadas. Pero es sólo lo que parece…

Ni las historias de Iker Jiménez son más espectaculares que la realidad. Ya comenté en el blog que, cuando algún objeto va a una velocidad cercana a la de la luz, el tiempo se dilata (pasa más poco a poco) y el espacio se contrae. O, lo que es lo mismo, ese objeto mide el tiempo más lento que nosotros y las distancias más cortas. Pero, ¿cómo puede ser que suceda esto?

Como digo, nuestra percepción es que el espacio y el tiempo son dos realidades distintas. Pero es sólo nuestra percepción. La realidad es que están intimamente ligadas. Juntas forman un todo. No es que tengamos un 3D de espacio y 1D de tiempo, sino que vivimos en un 4D de espacio-tiempo. Y asi es como lo llaman los físicos; el continuo espacio-tiempo. El problema es que percibimos un mundo en 3D y se nos hace imposible imaginar uno de 4.

No te sientas insultado, pero imagina que eres una pobre ameba que se pasea por la superficie de un plástico que hace de tejado de una cabaña de un niño. Como buena ameba, llevas toda su vida recorriendo distancias cortas y, de hecho, jamás has salido de la superficie del plástico. Lógicamente, este es plano y, para una ameba el mundo es en dos dimensiones. Puede ir hacia adelante, atrás, derecha o izquierda. Arriba y abajo es una idea que, para ella no existe.

ameba01

Pero un día una piedra cae sobre el plástico y este se deforma. ¿Notaría algo la ameba? ¡En absoluto! Sus dimensiones (delante, detrás, derecha e izquierda) siguen intactas. Si no fuera porque tienes inquietudes sobre física, jamás notarías la diferencia entre su universo plano o su universo doblado. Pero, ¿cómo podría descubrir que su universo ha sufrido un pliegue?

ameba02

Imaginemos que encuentras un exquisito manjar. Ahora no tienes hambre pero quieres asegurarte de que nadie te la roba. Y decides hacer rondas en círculo para que nadie, venga de donde venga, te la pueda arrebatar. Así que dibujas una circunferencia perfecta sobre tu superficie 2 dimensiones. Pero como eres muy perfeccionista, decides asegurar que tu círculo es perfecto, así que tomas medidas de la distancia respecto al radio y… ¡sorpresa! El radio resultante es menor de lo que esperabas!

Si la ameba es suficientemente lista, llegará a la conclusión que lo único que puede pasar es que su universo 2 dimensiones esté deformado  dentro de otro universo 3 dimensiones. Pero la pobre nunca podrá imaginarse ese universo 3 dimensiones.

Eso es justo lo que nos pasa a nosotros. Tenemos evidencias de que nuestro universo es de, por lo menos, 4 dimensiones (teorías cuánticas van mucho más allá, pero esa es otra historia), pero son evidencias indirectas. Y, como la ameba, somos incapaces de imaginar en nuestra mente más de 3 dimensiones.

Así que, mis queridas amebas, perdón, lectores del blog, bienvenidos a la cuarta dimensión de la física relativista.

E=mc2

Si hay una ecuación conocida es e=mc2, la de la energía de Einstein. ¿Quién no ha oído hablar de ella? ¿Y quién no sabe, sin acabar de entenderlo, que esta ecuación tiene unas implicaciones gordísimas como, por ejemplo, las bombas atómicas?

emc2

Pero, ¿cómo interpretarla? Para entenderla bien, primero, hay que comprender bien qué significa cada uno de sus componentes; la energía, la velocidad de la luz (c), la masa, y no hay que olvidar el igual.

Entender el concepto energía conlleva un problema. Los esoteristas en general tienden a utilizarla sin ningún rigor. Todo son energías positivas que fluyen y energías negativas que van. Como forma de expresar algo de forma popular está bien. Pero ha dotado a la palabra de un significado muy amplio que cada uno la amolda a lo que le parece dificultando que nos entendamos entre nosotros.

Para un físico newtoniano que, en definitiva, es lo que estudiamos en el colegio, la energía es capacidad de trabajo. Nada más que eso. Es decir, que cuando decimos que un cuerpo tiene mucha energía, no estamos diciendo que tenga ganas de bailar sino que tiene un gran potencial de generar trabajo. Cuando cogemos el coche de un niño y lo arrastramos hacia atrás, lo estamos cargando de energía para que, cuando lo soltemos, la libere corriendo mucho. Como veis, nada esotérico.

No dejemos el coche del niño. Cuando lo tiramos para atrás, en realidad, lo que estamos haciendo es algo parecido a estirar un muelle, que está deseando volver a colocarse bien, en lo que se conoce como la posición de reposo. Al final, los muelles y los humanos no somos tan distintos… Cuando soltamos el coche, es como cuando el jefe se va de la oficina, rápidamente pasa a posición de reposo. Pero, al hacerlo, el muelle se ve obligado a hacer girar las ruedas. Y eso se traduce en movimiento. Ese deseo de volver a reposo es la energía del muelle y el reposo es el estado mínimo de energía posible. Siempre queda algo, igual que nosotros, cuando se va el jefe, también hacemos como que trabajamos algunos ratos.

La masa mide es lo que cuesta mover un cuerpo. No es lo mismo levantar a un bebé de 3 meses que a un zampabollos de 15 años. ¿Por qué? Porque la masa del zampabollos es mucho mayor que la del bebé. Si no estáis de acuerdo, podéis probarlo. Pero antes, pedid hora al masajista para que os quite el dolor de espalda.

El igual ya lo dice la palabra; iguala lo que hay a un lado y otro del signo. Pero cuidado que no es tan obvio como parece. Quiere decir literalmente que es lo mismo. O sea, que estamos diciendo lo mismo si hablamos de energía que si hablamos de la masa multiplicada por la velocidad de la luz al cuadrado. Y esto tiene unas implicaciones increíbles que ahora os contaré.

¿Y la c? Es la velocidad de la luz en el vacío. Algo así como 300 mil km. cada segundo. No está nada mal, ¿no? Este número tiene unas consecuencias determinantes por varios motivos;

1º/ Es un número enorme y encima está elevado al cuadrado (multiplicado por si mismo), por lo que, a muy poco que valga la masa, la energía resultante va a ser enorme. Para que os hagáis una idea, un sólo gramo de materia contiene tanta energía como para mantener todo el alumbrado público de la ciudad de Barcelona durante algo menos de 20 minutos, o el equivalente a algo más de 2000 toneladas de petroleo.

2º/ Es una constante, o sea, un valor que no podemos cambiar. Dicho con otras palabras, lo único que hace es que cualquier valor que pongamos en la masa se haga enorme. Pero no varía nada más. Casi podemos interpretarlo como un corrector. Por lo que, en el fondo, la ecuación lo que nos está diciendo es que energía y masa son lo mismo. Mejor dicho, y gracias a que la c es tan grande, la masa es una forma de energía hiperconcentrada. Todo es energía, ya sea el calorcito que desprende el café y que tanto agradecemos en invierno, como cada uno de nuestros átomos.

El descubrimiento llevó al siguiente paso lógico; si dentro de la masa hay tanta energía, si soy capaz de liberarla, puedo tener dos cosas; energía infinita para lo que necesite y llegaron las centrales nucleares, y un arma de gran potencia destructiva. El miedo a que Hitler la desarrollara, que muchas veces anunció que tenía un arma poderosísima, hizo el resto para que el proyecto Manhattan acabara con la vida de centenares de miles de personas en Hiroshima y Nagasaki.

Lo que quizás ha convertido a esta ecuación en la más conocida de la historia de la física son sus consecuencias. Hemos encontrado una forma barata de generar energía, que genera unos residuos que ahora preocupan mucho por culpa de que ahora tenemos centrales de fisión pero que, probablemente en el futuro, nos darán una energía limpia de verdad con las centrales de fusión. y nos ha generado un terrible miedo a su fuerza devastadora.

Pero, con independencia de todo ello, nos ha cambiado nuestra percepción del universo y, lo que es más importante, de buena parte de nuestra vida cotidiana.

La paradoja de los gemelos

En el post de ayer hablé expliqué que, aunque la intuición nos diga lo contrario, el cálculo que hacemos del espacio y del tiempo dependen del observador. En concreto, a altas velocidades muy próximas a las de la luz, el tiempo pasa más despacio y el espacio se hace más pequeño.

Todo eso nos lleva a lo que se conoce como la paradoja de los gemelos. Imagina que montas una nave muy rápida y convences a un tipo que tiene un hermano gemelo a que se suba 40 años en la nave. El día del despegue, los dos gemelos se abrazan y se despiden entre lágrimas. Iban a regalarse fotos mutuamente, pero pensaron que con mirarse al espejo había suficiente.

La nave la lanzas a una velocidad próxima a la de la luz. Pasan los 40 años y el gemelo que se quedó en la Tierra, emocionado, llega ya con el pelo cano. Cuando la nave aterriza, la sorpresa es que el hermano viajero tiene prácticamente la misma edad que la que tenía cuando salió. Para él no han pasado 40 años sino apenas un rato. El reencuentro es de lo más curioso ya que, mientras uno está a punto de jubilarse, el otro aún tiene que acabar la carrera.

Si crees que el hermano viajero ha vivido 40 años sin envejecer te equivocas. De hecho, si le cobraste, ya puedes correr porque te va a reclamar. Para él, sólo ha pasado un rato. Así que, si a alguien se le ha pasado por la cabeza que podría subirse a una nave así para tener más tiempo y vivir más, que se olvide.

La verdad es que, de toda esta historia, lo que de verdad angustiaba a Einstein, no era exactamente que uno envejeciera más rápido que el otro. Para una cabeza preclara como la suya, esto que a nosotros nos parece incomprensible, para él, sólo era una consecuencia de la propia relatividad. Sin más. Lo que de verdad le aturdía era que, según su propia teoría, para el gemelo de la Tierra es el gemelo de la nave el que viaja a una velocidad próxima a la de la luz y, entonces, es lógico que sea el viajero el que envejece más. Pero, para el viajero es su hermano en la Tierra el que se aleja a toda velocidad. Y, por tanto, para el gemelo viajero, es su hermano en la Tierra quien debería envejecer más rápido. Y eso es absurdo. Esa es la auténtica paradoja.

Einstein desarrolló su teoría en dos partes. La gente la conoce como la teoría de la relatividad, pero en realidad está la relatividad especial y la general. La especial, que fue la primera que desarrolló en 1905, sólo sirve cuando los cuerpos van a velocidad constante. A la que hay aceleración como, de hecho, hay en el caso de los cohetes, deja de funcionar.

Hasta este punto, Einstein había hecho un trabajo muy importante, sobre todo, de interpretación de ecuaciones que otros habían descubierto pero no habían sido capaces de entender (en especial, lo que se conoce como transformación de Lorentz). Pero esa interpretación hubiera acabado haciéndola alguien quizás menos brillante que él pocos años después. La verdadera y gran aportación de Einstein vino en 1915 con la relatividad general porque hizo que la física se adelantara muchos años. La General, como el nombre indica, sirve para todos los casos, incluso cuando los cuerpos aceleran, y es bastante más compleja. Si alguien tiene interés (y un punto masoca) hay un libro excelente colgado en la red del propio Einstein sobre la Relatividad explicada para Bachilleres.

La paradoja de los gemelos (o de los relojes) se la planteó al desarollar la primera parte de la teoría y eso le trajo de cabeza unos cuantos años. La relatividad general demostró que es el hermano viajero el que envejece más lentamente. La demostración matemática de la paradoja no es demasiado complicada, pero la verdad es que hay que desempolvar las integrales de cuando estudiamos en el instituto. Yo os paso el enlace por si queréis disfrutarla.